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In [3] Bailey and Richard Crandall established normality base b for the class of con-

stants
Qpe = kz::l ckpeF ( )

where the integer b > 1 and ¢ is odd and co-prime to b, as well as some generalizations of
this class. The proof given in [3] is rather difficult and relies on several not-well-known
results, including one by Korobov on the properties of certain pseudo-random sequences.
Recently it has been shown that normality can be established much more easily, as a
consequence of what may be called the “hot spot” theorem [1]. Here we state and prove
a strong form of the “hot spot” theorem. A weaker result is given in [5, pg. 77], and is
proven by an ergodic theory argument in [2].

In the following, {-} denotes fractional part as before, and #]-] denotes count. p and
v denote probability measures on U (the unit interval mod 1). A — B denotes the set of
reAand z ¢ B, and AAB = (A— B)U (B — A). The notation a.e. z[u] means for all
x € U except for a set Q with u(Q) = 0. A Vitali covering of a measurable set A C U is
a collection of open intervals with the property that every x € A is contained in infinitely
many, arbitrarily small intervals in the collection. The measure v is absolutely continuous
with respect to p if v(A) = 0 whenever pu(A) = 0. The map T : U — U is said to be
measure-preserving with respect to u if u(T1A) = p(A) for every p-measurable set A,
and ergodic with respect to p if T7'A = A implies u(A) =0 or 1.

Given a real constant « in [0, 1), we define here a base-b hot spot to be some x € [0, 1)
with the property that

#Hozj<nl{Va} € (x — h 2 + h)]

llI}}l_}glf lim inf S = 0. (2)

Another way to state this condition is this: z is a base-b hot spot if given any M > 0,
there is some d3; > 0 such that for all h < d;; there is some N;, > 0 such that for all
n > Ny, the condition #o<j<n[{V’a} € (x — h,x + h)] > 2hnM holds.

What we shall establish below is that « is b-normal if and only if it has no base-b hot
spots. We first present a few preliminary results.

Lemma 1 Vitali covering lemma. If a p-measurable set A C U has a Vitali covering,

then given any € > 0, there is some finite disjoint subcollection A" with the property that
u(AAA") <.

This result is proven in [6].



Lemma 2 Birkoff ergodic theorem. Let f(t) be an integrable function on [0,1), and
let T be an ergodic transformation for pu. Then

1 n—1

lim — Z: f(TFz) = /fd,u for a.e. x|, (3)

n—00 N,

This result is proved in [4, pg. 13, 20-29].

Lemma 3 Equivalence of absolutely continuous measures. Suppose that T is
measure-preserving and ergodic with respect to both p and v, and further that v is ab-
solutely continuous with respect to . Then pu = v.

Proof. Applying the ergodic theorem to f(t) = I4(t) (the indicator function of A),
) 1 n—1
lim — Y f(TFz) = / F&)du(t) = p(A)  for ae. z[u]. (4)

n o0
TN o

Since v is absolutely continuous with respect to u, the above holds a.e. z[v] as well. Now
since T preserves the measure v, we can write, for n > 0,

A) = [Fwant = =3 [ 5 vta)

1 n—1 )
= [SY HTndve) — [aAdr = u(A) (5)
i=0
by the dominated convergence theorem. QED

Lemma 4 Absolute continuity of measures with finite derivatives. Suppose v is
a measure on U with the property that for a.e. x[v],

lim inf Hz=haz+th)
h—0 2h

Then v is absolutely continuous with Lebesque measure.

(6)

Proof. Here 1 denotes Lebesgue measure on U, and v denotes any measure as defined in
the hypothesis. Let A be any set with p(A) = 0, and let € > 0 be given. Then there exists
a set @ with v(Q)) < e and M > 1 such that the LHS of (6), as a function of z, is bounded
by M except on Q). Further, there exists some open set A’ O A with u(A’) < ¢/M. Then
for every x € (A’ — Q) there exists an infinite sequence hy, strictly decreasing to zero,
such that (x — hy,z + hy) C A" and v(z — hy,x + hg)/(2hy) < M + € for kK > 1. For
r € (A'NQ), define hy, = 2™ % where m is large enough that (x — hy,z + h;) C A’
Note that in either case all of these intervals are contained within A’. The collection of



these intervals is a Vitali covering of the set A’, so by the Vitali covering lemma there is
a finite disjoint subcollection A” C A’ with v(A’ — A”) < e. We can then write

v(A) < v(A&) = v(A") 4+ v - A")
V(A" = Q)+ v(A"NQ)+v(A - A")
(M +e)u(A" —Q)+2¢ < (M+e)u(A") + 2¢
(M +€)e/M + 2¢ < Ae, (7)

<
<

which implies that v(A) = 0. QED
In the following, p will denote Lebesgue measure on U, and, given a real constant
a € U and an integer b > 2, v will denote the measure defined on an interval (¢, d) as

v(c,d) = liminf to<jenl{V’a} € (¢, d)]

n—oo n

(8)

Lemma 5 Ergodicity of the digit-shift transformation. The digit-shift transfor-
mation T(x) = {bx} is measure-preserving and ergodic with respect to both u and v.

Proof. T clearly preserves Lebesgue measure. Assume for convenience that b = 2, and
suppose that A = T7!'(A). Then note that z € A if and only if {x + 1/2} € A. Thus if
D = (0,1/2), then u(AN D) = pu(A)/2 = u(A)u(D). A similar equality follows for any
binary rational interval (j2™, k2™), and thus for any finite disjoint union of such intervals.
This collection of binary rational intervals is a Vitali covering of A. Thus given € > 0,
there is some finite disjoint union E with u(AAE) < e and p(ANE) = u(A)u(E). We
can then write

1(A) = p*(A)] < |n(A) — p(Au(E) +e = [u(A) — (AN E)| +e
= [p(A) = (u(A) = (A= E))[ + € < 2¢ (9)
Thus pu(A) = p*(A), so that u(A) = 0 or 1 as required. A similar argument applies to the

measure v as defined above. In the parlance of ergodic theory, T"is “mixing” with respect
to both p and v, which condition is well-known to imply ergodicity [4, pg. 12]. QED

Theorem 1 Hot spot theorem. The real constant o is b-normal if and only if it has
no base-b hot spots.

Proof. If a has no base-b hot spots, then it follows immediately from Lemmas 3, 4, and
5, that for any interval (¢, d) C U,

L inf H#o<jen[{Va} € (¢, d)]

n—00 n

= ule,d) = d—c (10)



This result also applies to (0,¢) U (d, 1), which except for ¢,d and the point 0 is the
complement of (c,d). We can then write

#ocj<nl{Va} € (¢, d)] tojen[{t/0} € (0,¢) U (d, 1)]

lim sup = 1 — liminf
n—00 n n—00 n
= 1—(c+(1-d) =d—-c (11)

Thus the liminf and the limsup are identical. Since this holds for any interval (c,d),
it holds in particular for any interval whose endpoints are of the form j/b™. Thus « is
b-normal. QED
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